Cosmic Rays from Dark Matter

D. Kim & **JCP** [arXiv:1507.07922] & [arXiv:1508.06640]

&

K. Boddy, K. Dienes, D. Kim, J. Kumar, **JCP** & B. Thomas [arXiv:1606.07440] & [arXiv:1609.09104]

The 6th KIAS Workshop on Particle Physics & Cosmology The 2nd Durham-KEK-KIPMU-KIAS Joint Workshop October 25 (2016)

Need for New Physics

On top of theory motivation, there are real & hopefully-real motivations for new physics.

Neutrino, Dark Matter, Collider, Cosmic-Ray, Cosmology, ...

Need for New Physics

On top of theory motivation, there are real & hopefully-real motivations for new physics.

Neutrino, Dark Matter, Collider, Cosmic-Ray, Cosmology, ...

Cosmic-Ray Experiments

- & Ground-based MAGIC, HESS, CTA, IceCube, Super-K, Hyper-K, ...
- Balloon-basedATIC, PPB-BETS, ...
- Satellite-based

AMS, DAMPE, Fermi-LAT, PAMELA, INTEGRAL, ASTROGAM, CALET, ...

- ✓ **Great sensitivity** to cosmic-ray signals
- Better chance to have the information for extracting DM properties

Hints from Cosmic Rays?

- DM signatures in cosmic-ray observations?
 - ≻ SPI/INTEGRAL ($\gamma \rightarrow e^+$): 511 keV line
 - > PAMELA (e^{\pm} , p^{\pm} , ...): e^{+} excess
 - > ATIC (e⁻e⁺): e⁻e⁺ excess
 - > Fermi-LAT (e^-e^+ , γ): e^-e^+ excess, 130 GeV line, GeV excess
 - ➤ AMS-02 (e[±], p[±], ...): e⁺ excess
 - > XMM-Newton (X-ray): 3.5 keV line
 - > IceCube (v): PeV events

▶ ...

Conventional Approaches

Line-Like Excesses

♦ 3.5 keV line, 511 keV line, 130 GeV line, ...

* <u>Typical DM interpretation</u>

✓ DM: directly annihilates/decays into

2 (stable) SM particles, γ +X

- ✓ The location of the line is identified as the (double) mass of DM
- ✓ Width of the line is instrumental

Bump-Like Excesses

♦ GC GeV γ-ray excess, e⁺ excess, …

* <u>Typical DM interpretation</u>

- DM: directly annihilates/decays into
 2 (unstable) SM particles which further
 goes to stable SM particles through
 secondary processes
- ✓ Diffusion mechanism for charged particles
- Shape information (including the peak position): highly model-dependent

- ✤ Scenario with a single DM species
 - ✓ Simplest & well-motivated scenario
 - $\checkmark\,$ Stability of DM ensured (typically) by a discrete symmetry
 - ✓ **Popular models** having a single type of DM candidate:
 - SUSY models with R-parity
 - Extra-D models with KK-parity
 - Little Higgs models with T-parity

- Scenario with multiple DM species
 - ✓ Nothing stops from having more stable particles
 - Visible sector (SM) has many stable particles
 - Rising interest in non-minimal scenarios

- Scenario with multiple DM species
 - ✓ Nothing stops from having more stable particles
 - Visible sector (SM) has many stable particles
 - Rising interest in non-minimal scenarios

- Scenario with multiple DM species
 - ✓ Nothing stops from having more stable particles
 - Visible sector (SM) has many stable particles
 - Rising interest in non-minimal scenarios

Scenario with multiple DM species: Dynamical DM framework

✓ DDM framework: the dark sector comprises a potentially vast ensemble of individual particle species χ_n whose cosmological abundances Ω_n are balanced against their decay width Γ_n in such a way as to ensure consistency with observational data.

K. Dienes & B. Thomas (2011)

✓ Mass parameters (generic parameterization)

$$m_n = m_0 + n^{\delta} \Delta m$$

δ:mass scaling parameter, Δm : mass splitting/gap

✓ Parameterizing the fluxes Φ_n by a single power law with a scaling parameter ξ

$$\Phi_n = \Phi_0 \left(\frac{m_n}{m_0}\right)^{\xi} = \Phi_0 \left(\frac{\sqrt{s_n}}{\sqrt{s_0}}\right)^{\xi}$$

Energy Peak in Cosmic-Rays

- With DM interpretation in mind, we propose alternative mechanisms based on the observation of the "*Energy-Peak*" in collider physics to explain cosmic-ray excesses.
- ✤ Why E-Peak?

- Large multiplicity

- Energy is the only available quantity

- Momentum w.r.t. the beam line
- Unique spectral features from 1st principle irrespective of underlying DM model details (vs. highly model-dependent in the conventional interpretation)

E-Peak: a Quick Review

A simple 2-body decay of a heavy resonance *B* into *A* and massless visible *a*

 \Box Energy of visible particle *a* is

monochromatic & simple

function of masses

B rest frame

 $\Box E_a^*$ measured & m_A known,

 $\rightarrow m_B$ determined, vice versa

E-Peak: a Quick Review

E-Peak: a Quick Review

"stacking up" rectangles

 \Box Distribution in $E \rightarrow$ summing up the contributions from all relevant boost factors

 \rightarrow "<u>Stacking up</u>" rectangles weighted by boost distribution of particle B

 \Box Energy distribution has a unique peak at $E=E^*$

Applications

o-step cascade

- □ Simplest and conventional model
- □ Featured by a sharp peak

1-step cascade

- Introducing an on-shell intermediary state directly decaying into two photons (e.g. dark pion, ALP)
- □ Featured by a **box-like** distribution

2-step cascade

- Introducing an on-shell intermediary state before the state decaying into two photons
- Developing a plateau or a peak depending on model details
- Morphologically constrained: analytic expression for the shape available
- Alternative mechanism for cosmic-ray peaks
 e.g. 130 GeV/3.5 keV lines
 D. Kim & JCP [PLB (2015)]

3-step cascade

- Introducing one more on-shell intermediary state before the state decaying into two photons
- **Developing a smoothly rising-and-falling shape**
- Generic distribution function:

$$f(E_{\gamma}) \propto \exp\left[-\frac{w}{2}\left(\frac{E_{\gamma}}{E_{\gamma}^{*}} + \frac{E_{\gamma}^{*}}{E_{\gamma}}\right)^{p}\right]$$

$$f(E_{\gamma}) \propto \exp\left[-\frac{w}{2}\left(\frac{E_{\gamma}}{E_{\gamma}^{*}} + \frac{E_{\gamma}^{*}}{E_{\gamma}}\right)^{p}\right]$$

Bump: Features of GeV Excess

- ♦ Signal: extended to > 10° from the GC → disfavor point sources
- Consistent with the dynamical center of the Milky Way (< 0.05°)</p>
- ✤ The spectrum of the excess peaks at 1-3 GeV.

Bump: Conventional Approach

The spectrum is in good agreement with the predictions from 20-40 GeV

DM mostly annihilating to quarks (fragmentation, IC, bremsstrahlung, ...).

★ Required cross section is ~ $0.7-2.1 \cdot 10^{-26}$ cm³/s

Dark Cascade: GeV y-ray Bump

> Fitting function: $f_M(E_{\gamma}) = N \exp\left[-\frac{w}{2}\left(\frac{E_{\gamma}}{E_{\gamma}^*} + \frac{E_{\gamma}^*}{E_{\gamma}}\right)^p\right]$ with $E_{\gamma}^* = m_a/2$

 \succ cf. arXiv:1402.6703 (bb) → χ^2 /d.o.f.= 44/20 with $m_{\rm DM}$ =36.6 GeV

D. Kim & JCP, Phys Dark Univ (2016)

Multi-Component DM Models

Mechanism

□ What if there exist multiple DM species? What if the collection of DM particles have sufficiently small mass gaps (smaller than relevant energy resolution)?

K. Boddy, K. Dienes, D. Kim, J. Kumar, **JCP**, and B. Thomas (2016)

Multi-Component DM Models

Mechanism

- □ What if there exist multiple DM species? What if the collection of DM particles have sufficiently small mass gaps (smaller than relevant energy resolution)?
- Obtaining continuum energy spectra not by cascade decays, but by increasing the number of DM species

Fit Results to GeV y-ray Bump

> Data reproduced well enough (see χ^2 values)

 \succ cf. arXiv:1402.6703 (bb) → χ^2 /d.o.f.= 64/20 (44/20) with $m_{\rm DM}$ =43.0 (36.6) GeV

K. Boddy, K. Dienes, D. Kim, J. Kumar, JCP, and B. Thomas (2016)

Line-like Excesses

Line-like Excesses

Application to 130 GeV line

□ Data extracted from the ULTRACLEAN event class in arXiv:1204.2797

□ Power-law background template considered simultaneously

Doojin Kim & JCP, PLB (2015)

Line-like Excesses

Application to 3.5 keV line

 Data extracted from the MOS spectrum of the central region of the galaxy M31 in arXiv:1402.4119

□ Signal template only considered

Doojin Kim & JCP, PLB (2015)

Conclusions

- > Conventional DM interpretations on $cosmic/\gamma$ -ray excesses:
 - 1. Line: directly into γ + X

2. Bump: into SM particle pairs $\rightarrow \gamma$'s

Conclusions

- > Conventional DM interpretations on $cosmic/\gamma$ -ray excesses:
 - 1. Line: directly into $\gamma + X$ 2. Bump: into SM particle pairs $\rightarrow \gamma$'s
- > Alternative mechanisms using E-peak idea:

Non-minimal DM sector (e.g., Assisted FO, DDM, ...)

- 1. χ_h finally into $\chi_l + a(\rightarrow 2\gamma)$ via $\geq 1(2)$ step cascade
- 2. $\Sigma \chi_i$ into $X + a(\rightarrow 2\gamma)$
- > Reasonable χ^2 fits (χ^2 /d.o.f.~1)

Conclusions

- > Conventional DM interpretations on $cosmic/\gamma$ -ray excesses :
 - 1. Line: directly into $\gamma + X$ 2. Bump: into SM particle pairs $\rightarrow \gamma$'s

χι΄

χ'n

χh

 $\Sigma \chi_i$

 $\Sigma \chi_i$

A

R

Xı

> Alternative mechanisms using E-peak idea:

Non-minimal DM sector (e.g., Assisted FO, DDM, ...)

1. χ_h finally into $\chi_l + a(\rightarrow 2\gamma)$ via $\geq 1(2)$ step cascade

2. $\Sigma \chi_i$ into $X + a(\rightarrow 2\gamma)$

- > Reasonable χ^2 fits (χ^2 /d.o.f.~1)
- > Symmetric w.r.t the peak in logarithmic E_{γ}
 - → prediction: m_a

